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Abstract

We prove an oracle inequality for generic regularized empirical risk minimization
algorithms learning from α-mixing processes. To illustrate this oracle inequality,
we use it to derive learning rates for some learning methods including least squares
SVMs. Since the proof of the oracle inequality uses recent localization ideas
developed for independent and identically distributed (i.i.d.) processes, it turns
out that these learning rates are close to the optimal rates known in the i.i.d. case.

1 Introduction

In the past, most articles investigating statistical properties of learning algorithms assumed that the
observed data was generated in an i.i.d. fashion. However, in many applications this assumption
cannot be strictly justified since the sample points are intrinsically temporal and thus often weakly
dependent. Typical examples for this phenomenon are applications where observations come from
(suitably pre-processed) time series, i.e., for example, financial predictions, signal processing, sys-
tem observation and diagnosis, and speech or text recognition. A set of natural and widely accepted
notions for describing such weak dependencies1 are mixing concepts such as α-, β-, and φ-mixing,
since a) they offer a generalization to i.i.d. processes that is satisfied by various types of stochastic
processes including Markov chains and many time series models, and b) they quantify the depen-
dence in a conceptionally simple way that is accessible to various types of analysis.

Because of these features, the machine learning community is currently in the process of appreciat-
ing and accepting these notions as the increasing number of articles in this direction shows. Prob-
ably the first work in this direction goes back to Yu [20], whose techniques for β-mixing processes
inspired subsequent work such as [18, 10, 11], while the analysis of specific learning algorithms
probably started with [9, 5, 8]. More recently, [7] established consistency of regularized boosting
algorithms learning from β-mixing processes, while [15] established consistency of support vector
machines (SVMs) learning from α-mixing processes, which constitute the largest class of mixing
processes. For the latter, [21] established generalization bounds for empirical risk minimization
(ERM) and [19, 17] analyzed least squares support vector machines (LS-SVMs).

In this work, we establish a general oracle inequality for generic regularized learning algorithms and
α-mixing observations by combining a Bernstein inequality for such processes [9] with localization
ideas for i.i.d. processes pioneered by [6] and refined by e.g. [1]. To illustrate this oracle inequality,
we then use it to show learning rates for some algorithms including ERM over finite sets and LS-
SVMs. In the ERM case our results match those in the i.i.d. case if one replaces the number of
observations with the “effective number of observations”, while, for LS-SVMs, our rates are at
least quite close to the recently obtained optimal rates [16] for i.i.d. observations. However, the
latter difference is not surprising, when considering the fact that [16] used heavy machinery from

1For example, [4] write on page 71: “. . . it is a common practice to assume a certain mild asymptotic
independence (such as α-mixing) as a precondition in the context of . . . nonlinear times series.”
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empirical process theory such as Talagrand’s inequality and localized Rademacher averages, while
our results only use a light-weight argument based on Bernstein’s inequality.

2 Definitions, Results, and Examples

Let X be a measurable space and Y ⊂ R be closed. Furthermore, let (Ω,A, µ) be a probability
space and Z := (Zi)i≥1 be a stochastic process such that Zi : Ω → X×Y for all i ≥ 1. For n ≥ 1,
we further write Dn := ((X1, Y1), . . . , (Xn, Yn)) := (Z1, . . . , Zn) for a training set of length n
that is distributed according to the first n components of Z . Throughout this work, we assume that
Z is stationary, i.e., the (X × Y )n-valued random variables (Zi1 , . . . , Zin) and (Zi1+i, . . . , Zin+i)
have the same distribution for all n, i, i1, . . . , in ≥ 1. We further write P for the distribution of one
(and thus all) Zi, i.e., for all measurable A ⊂ X × Y , we have

P (A) = µ
(
{ω ∈ Ω : Zi(ω) ∈ A}

)
. (1)

To learn from stationary processes whose components are not independent, [15] suggests that it is
necessary to replace the independence assumption by a notion that still guarantees certain concen-
tration inequalities. We will focus on α-mixing, which is based on the α-mixing coefficients

α(Z, µ, n) := sup
{∣∣µ(A ∩B)− µ(A)µ(B)

∣∣ : i ≥ 1, A ∈ Ai
1 and B ∈ A∞i+n

}
, n ≥ 1,

where Ai
1 and A∞i+n are the σ-algebras generated by (Z1, . . . , Zi) and (Zi+n, Zi+n+1, . . . ), respec-

tively. Throughout this work, we assume that the process Z is geometrically α-mixing, that is
α(Z, µ, n) ≤ c exp(−bnγ) , n ≥ 1, (2)

for some constants b > 0, c ≥ 0, and γ > 0. Of course, i.i.d. processes satisfy (2) for c = 0 and all
b, γ > 0. Moreover, several time series models such as ARMA and GARCH, which are often used
to describe, e.g. financial data, satisfy (2) under natural conditions [4, Chapter 2.6.1], and the same
is true for many Markov chains including some dynamical systems perturbed by dynamic noise, see
e.g. [18, Chapter 3.5]. An extensive and thorough account on mixing concepts including stronger
mixing notions such as β- and φ-mixing is provided by [3].

Let us now describe the learning algorithms we are interested in. To this end, we assume that we
have a hypothesis set F consisting of bounded measurable functions f : X → R that is pre-compact
with respect to the supremum norm ‖ · ‖∞, i.e., for all ε > 0, the covering numbers

N (F , ‖ · ‖∞, ε) := inf
{
n ≥ 1 : ∃f1, . . . , fn ∈ F such that F ⊂

n⋃
i=1

B(fi, ε)
}

are finite, where B(fi, ε) := {f ∈ `∞(X) : ‖f −fi‖∞ ≤ ε} denotes the ε-ball with center fi in the
space `∞(X) of bounded functions f : X → R. Moreover, we assume that we have a regularizer,
that is, a function Υ : F → [0,∞). Following [13, Definition 2.22], we further say that a function
L : X × Y ×R→ [0,∞) is a loss that can be clipped at some M > 0, if L is measurable and

L(x, y, t̄) ≤ L(x, y, t) , (x, y, t) ∈ X × Y ×R, (3)
where t̄ denotes the clipped value of t at ±M , that is t̄ := t if t ∈ [−M,M ], t̄ := −M if t < −M ,
and t̄ := M if t > M . Various often used loss functions can be clipped. For example, if Y :=
{−1, 1} and L is a convex, margin-based loss represented by ϕ : R → [0,∞), that is L(y, t) =
ϕ(yt) for all y ∈ Y and t ∈ R, then L can be clipped, if and only if ϕ has a global minimum, see [13,
Lemma 2.23]. In particular, the hinge loss, the least squares loss for classification, and the squared
hinge loss can be clipped, but the logistic loss for classification and the AdaBoost loss cannot be
clipped. On the other hand, [12] established a simple technique, which is similar to inserting a
small amount of noise into the labeling process, to construct a clippable modification of an arbitrary
convex, margin-based loss. Moreover, if Y := [−M,M ] and L is a convex, distance-based loss
represented by some ψ : R → [0,∞), that is L(y, t) = ψ(y − t) for all y ∈ Y and t ∈ R, then L
can be clipped whenever ψ(0) = 0, see again [13, Lemma 2.23]. In particular, the least squares loss
and the pinball loss used for quantile regression can be clipped, if the space of labels Y is bounded.

Given a loss function L and an f : X → R, we often use the notation L ◦ f for the function
(x, y) 7→ L(x, y, f(x)). Moreover, the L-risk is defined by

RL,P (f) :=
∫

X×Y

L(x, y, f(x)) dP (x, y) ,
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and the minimal L-risk is R∗
L,P := inf{RL,P (f) | f : X → R}. In addition, a function f∗L,P

satisfying RL,P (f∗L,P ) = R∗
L,P is called a Bayes decision function. Finally, we denote empirical

risks based on Dn by RL,Dn
(f), that is, for a realization of Dn(ω) of the training set Dn we have

RL,Dn(ω)(f) =
1
n

n∑
i=1

L
(
Xi(ω), Yi(ω), f(Xi(ω))

)
.

Given a regularizer Υ : F → [0,∞), a clippable loss, and an accuracy δ ≥ 0, we consider learning
methods that, for all n ≥ 1, produce a decision function fDn,Υ ∈ F satisfying

Υ(fDn,Υ) +RL,Dn
(f̄Dn,Υ) ≤ inf

f∈F

(
Υ(f) +RL,Dn

(f)
)

+ δ . (4)

Note that methods such as SVMs (see below) that minimize the right-hand side of (4) exactly, satisfy
(4), because of (3). The following theorem, which is our main result, establishes an oracle inequality
for methods (4), when the training data is generated by Z .

Theorem 2.1 Let L : X × Y × R → [0,∞) be a loss that can be clipped at M > 0 and that
satisfies L(x, y, 0) ≤ 1, L(x, y, t) ≤ B, and∣∣L(x, y, t)− L(x, y, t′)

∣∣ ≤ |t− t′| (5)

for all (x, y) ∈ X × Y and t, t′ ∈ [−M,M ], where B > 0 is some constant. Moreover, let
Z := (Zi)i≥1 be an X × Y -valued process that satisfies (2), and P be defined by (1). Assume that
there exist a Bayes decision function f∗L,P and constants ϑ ∈ [0, 1] and V ≥ B2−ϑ such that

EP

(
L ◦ f̄ − L ◦ f∗L,P

)2 ≤ V ·
(
EP (L ◦ f̄ − L ◦ f∗L,P )

)ϑ
, f ∈ F , (6)

where F is a hypothesis set and L ◦ f denotes the function (x, y) 7→ L(x, y, f(x)). Finally, let
Υ : F → [0,∞) be a regularizer, f0 ∈ F be a fixed function and B0 ≥ B be a constant such that
‖L ◦ f0‖∞ ≤ B0. Then, for all fixed ε > 0, δ ≥ 0, τ > 0, and n ≥ max{b/8, 22+5/γb−1/γ}, every
learning method defined by (4) satisfies with probability µ not less than 1− 3Ce−τ :

Υ(fDn,Υ) +RL,P (f̄Dn,Υ)−R∗
L,P < 3

(
Υ(f0) +RL,P (f0)−R∗

L,P

)
+

4B0cBτ

nα
+ 4ε+ 2δ

+
(

36cσV (τ + lnN (F , ‖ · ‖∞, ε))
nα

)1/(2−ϑ)

,

where α := γ
γ+1 , C := 1 + 4e−2c, cσ := ( 82+γ

b )1/(1+γ), and cB := cσ/3.

Before we illustrate this theorem by a few examples, let us briefly discuss the variance bound (6).
For example, if Y = [−M,M ] and L is the least squares loss, then it is well-known that (6) is
satisfied for V := 16M2 and ϑ = 1, see e.g. [13, Example 7.3]. Moreover, under some assumptions
on the distribution P , [14] established a variance bound of the form (6) for the so-called pinball
loss used for quantile regression. In addition, for the hinge loss, (6) is satisfied for ϑ := q/(q + 1),
if Tsybakov’s noise assumption holds for q, see [13, Theorem 8.24]. Finally, based on [2], [12]
established a variance bound with ϑ = 1 for the earlier mentioned clippable modifications of strictly
convex, twice continuously differentiable margin-based loss functions.

One might wonder, why the constant B0 is necessary in Theorem 2.1, since appearently it only adds
further complexity. However, a closer look reveals that the constant B only bounds functions of the
form L ◦ f̄ , while B0 bounds the function L ◦ f0 for an unclipped f0 ∈ F . Since we do not assume
that all f ∈ F satisfy f̄ = f , we conclude that in general B0 is necessary. We refer to Examples 2.4
and 2.5 for situations, where B0 is significantly larger than B.

Let us now consider a few examples of learning methods to which Theorem 2.1 applies. The first
one is empirical risk minimization over a finite set.

Example 2.2 Let the hypothesis set F be finite and Υ(f) = 0 for all f ∈ F . Moreover, assume
that ‖f‖∞ ≤ M for all f ∈ F . Then, for accuracy δ := 0, the learning method described by (4) is
ERM, and Theorem 2.1 provides, by some simple estimates, the oracle inequality

RL,P (fDn,Υ)−R∗
L,P < 3 inf

f∈F

(
RL,P (f)−R∗

L,P

)
+

(
36cσV (τ + ln |F|)

nα

)1/(2−ϑ)

+
4BcBτ
nα

.
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Besides constants, this oracle inequality is an exact analogue to the standard oracle inequality for
ERM learning from i.i.d. processes, [13, Theorem 7.2]. C

Before we present another example, let us first reformulate Theorem 2.1 for the case that the involved
covering numbers have a certain polynomial behavior.

Corollary 2.3 Consider the situation of Theorem 2.1 and additionally assume that there exist con-
stants a > 0 and p ∈ (0, 1] such that

lnN (F , ‖ · ‖∞, ε) ≤ a ε−2p , ε > 0.

Then there is cp,ϑ > 0 only depending on p and ϑ such that the inequality of Theorem 2.1 reduces to

Υ(fDn,Υ) +RL,P (f̄Dn,Υ)−R∗
L,P < 3

(
Υ(f0) +RL,P (f0)−R∗

L,P

)
+ cp,ϑ

(
cσV a

nα

)1/(2+2p−ϑ)

+
(

36cσV τ
nα

)1/(2−ϑ)

+
4B0cBτ

nα
+ 2δ .

For the learning rates considered in the following examples, the exact value of cp,ϑ is of no impor-
tance. However, a careful numerical analysis shows that cp,ϑ ≤ 40 for all p ∈ (0, 1] and ϑ ∈ [0, 1].

Corollary 2.3 can be applied to various methods including e.g. SVMs with the hinge loss or the
pinball loss, and regularized boosting algorithms. For the latter, we refer to e.g. [2] for some learning
rates in the i.i.d. case and to [7] for a consistency result in the case of geometrically β-mixing
observations. Unfortunately, a detailed exposition of the learning rates resulting from Corollary 2.3
for all these algorithms is clearly out of scope this paper, and hence we will only discuss learning
rates for LS-SVMs. However, the only reason we picked LS-SVMs is that they are one of the few
methods for which both rates for learning from α-mixing processes and optimal rates in the i.i.d. case
are known. By considering LS-SVMs we can thus assess the sharpness of our results. Let us begin
by briefly recalling LS-SVMs. To this end, let X be a compact metric space and k be a continuous
kernel on X with reproducing kernel Hilbert space (RKHS) H . Given a regularization parameter
λ > 0 and the least squares loss L(y, t) := (y − t)2, the LS-SVM finds the unique solution

fDn,λ = arg min
f∈H

(
λ‖f‖2

H +RL,Dn(f)
)
.

To describe the approximation properties of H , we further need the approximation error function

A(λ) := inf
f∈H

(
λ‖f‖2

H +RL,P (f)−R∗
L,P

)
, λ > 0 .

Example 2.4 (Rates for least squares SVMs) Let X be a compact metric space, Y = [−1, 1], and
Z and P as above. Furthermore, let L be the least squares loss and H be the RKHS of a continuous
kernel k over X . Assume that the closed unit ball BH of H satisfies

lnN (BH , ‖ · ‖∞, ε) ≤ a ε−2p , ε > 0, (7)

where a > 0 and p ∈ (0, 1] are some constants. In addition, assume that the approximation error
function satisfies A(λ) ≤ cλβ for some c > 0, β ∈ (0, 1], and all λ > 0. We define

ρ := min
{
β,

β

β + 2pβ + p

}
.

Then Corollary 2.3 applied to F := λ−1/2BH shows that the LS-SVM using λn := n−αρ/β learns
with rate n−αρ. Let us compare this rate with other recent results: [17] establishes the learning rate

n−
2β

β+3 ,

whenever (2) is satisfied for some α. At first glance, this rate looks stronger, since it is independent
of α. However, a closer look shows that it depends on the confidence level 1− 3Ce−τ by a factor of
eτ rather than by the factor of τ appearing in our analysis, and hence these rates are not comparable.
Moreover, in the case α = 1, our rates are still faster whenever p ∈ (0, 1/3], which is e.g. satisfied
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for sufficiently smooth kernels, see e.g. [13, Theorem 6.26]. Moreover, [19] has recently established
the rate

n−
αβ

2p+1 , (8)

which is faster than ours, if and only if β > 1+p
1+2p . In particular, for highly smooth kernels such

as the Gaussian RBF kernels, where p can be chosen arbitrarily close to 0, their rate is never faster.
Moreover, [19] requires knowing α, which, as we will briefly discuss in Remark 2.6, is not the case
for our rates. In this regard, it is interesting to note that their iterative proof procedure, see [13,
Chapter 7.1] for a generic description of this technique, can also be applied to our oracle inequality.
The resulting rate is essentially n−α min{β,β/(β+pβ+p)}, which is always faster than (8). Due to
space constraints and the fact that these rates require knowing α and β, we skip a detailed exposition.
Finally, both [19] and [17] only consider LS-SVMs, while Theorem 2.1 applies to various learning
methods. C

Example 2.5 (Almost optimal rates for least squares SVMs) Consider the situation of Example
2.4, and additionally assume that there exists a constant Cp > 0 such that

‖f‖∞ ≤ Cp ‖f‖p
H‖f‖

1−p
L2(PX) , f ∈ H. (9)

As in [16], we can then bound B0 ≤ λ(β−1)p, and hence the SVM using λn := n−
α

β+2pβ+p learns
with rate

n−
αβ

β+2pβ+p ,

compared to the optimal rate n−
β

β+p in the i.i.d. case, see [16]. In particular, if H = Wm(X)
is a Sobolev space over X ⊂ Rd with smoothness m > d/2, and the marginal distribution PX

is absolutely continuous with respect to the uniform distribution, where corresponding density is
bounded away from 0 and ∞, then (7) and (9) are satisfied for p := d

2m . Moreover, the assumption
on the approximation error function is satisfied for β := s/m, whenever f∗L,P ∈ W s(X) and
s ∈ (d/2,m]. Consequently, the resulting learning rate is

n−
2sα

2s+d+2ds/m ,

which in the i.i.d. case, where α = 1, is worse than the optimal rate n−
2s

2s+d by the term 2ds/m. Note
that this difference can be made arbitrarily small by picking a sufficiently large m. Unfortunately,
we do not know, whether the extra term 2ds/m is an artifact of our proof techniques, which are
relatively light-weighted compared to the heavy machinery used in the i.i.d. case. Similarly, we
do not know, whether the used Bernstein inequality for α-mixing processes, see Theorem 3.1, is
optimal, but it is the best inequality we could find in the literature. However, if there is, or will be, a
better version of this inequality, our oracle inequalities can be easily improved, since our techniques
only require a generic form of Bernstein’s inequality. C

Remark 2.6 In the examples above, the rates were achieved by picking particular regularization
sequences that depend on both α and β, which in turn, are almost never known in practice. Fortu-
nately, there exists an easy way to achieve the above rates without such knowledge. Indeed, let us
assume we pick a polynomially growing n−1/p-net Λn of (0, 1], split the training sample Dn into
two (almost) equally sized and consecutive parts D(1)

n and D(2)
n , compute f

D
(1)
n ,λ

for all λ ∈ Λn,
and pick a λ∗ ∈ Λn whose f

D
(1)
n ,λ∗

minimizes the R
L,D

(2)
n

-risk over Λn. Then combining Example
2.2 with the oracle inequality of Corollary 2.3 for LS-SVMs shows that the learning rates of the
Examples 2.4 and 2.5 are also achieved by this training-validation approach. Although the proof is
a straightforward modification of [13, Theorem 7.24], it is out of the page limit of this paper. C

3 Proofs

In the following, btc denotes the largest integer n satisfying n ≤ t, and similarly, dte denotes the
smallest integer n satisfying n ≥ t.

The key result we need to prove the oracle inequality of Theorem 2.1 is the following Bernstein type
inequality for geometrically α-mixing processes, which was established in [9, Theorem 4.3]:
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Theorem 3.1 Let Z := (Zi)i≥1 be an X × Y -valued stochastic process that satisfies (2) and P be
defined by (1). Furthermore, let h : X × Y → R be a bounded measurable function for which there
exist constants B > 0 and σ ≥ 0 such that EPh = 0, EPh

2 ≤ σ2, and ‖h‖∞ ≤ B. For n ≥ 1 we
define

n(γ) :=

⌊
n

⌈(
8n
b

) 1
γ+1

⌉−1
⌋
.

Then, for all n ≥ 1 and all ε > 0, we have

µ

({
ω ∈ Ω :

1
n

n∑
i=1

h(Zi(ω)) ≥ ε

})
≤

(
1 + 4e−2c

)
e
− 3ε2n(γ)

6σ2+2εB . (10)

Before we prove Theorem 2.1, we need to slightly modify (10). To this end, we first observe that
dte ≤ 2t for all t ≥ 1 and btc ≥ t/2 for all t ≥ 2. From this it is easy to conclude that, for all n
satisfying n ≥ n0 := max{b/8, 22+5/γb−1/γ}, we have

n(γ) ≥ 2−
2γ+5
γ+1 b

1
γ+1 nα ,

where α := γ
γ+1 . For C := 1 + 4e−2c, cσ := ( 82+γ

b )1/(1+γ), and cB := cσ/3, we thus obtain

µ

({
ω ∈ Ω :

1
n

n∑
i=1

h(Zi(ω)) ≥ ε

})
≤ Ce−τ , n ≥ n0,

where τ := ε2nα

cσσ2+εcBB . Simple transformations and estimations then yield

µ

({
ω ∈ Ω :

1
n

n∑
i=1

h(Zi(ω)) ≥
√
τcσσ2

nα
+
cBBτ

nα

})
≤ Ce−τ (11)

for all n ≥ max{b/8, 22+5/γb−1/γ} and τ > 0. In the following, we will use only this inequality.
In addition, we will need the following simple and well-known lemma:

Lemma 3.2 For q ∈ (1,∞), define q′ ∈ (1,∞) by 1/q + 1/q′ = 1. Then, for all a, b ≥ 0, we have
(qa)2/q(q′b)2/q′ ≤ (a+ b)2 and ab ≤ aq/q + bq

′
/q′.

Proof of Theorem 2.1: For f : X → R we define hf := L ◦ f − L ◦ f∗L,P . By the definition of
fDn,Υ, we then have Υ(fDn,Υ)+ EDnhf̄Dn,Υ

≤ Υ(f0)+ EDnhf0 + δ, and consequently we obtain

Υ(fDn,Υ) +RL,P (f̄Dn,Υ)−R∗
L,P

= Υ(fDn,Υ) + EPhf̄Dn,Υ

≤ Υ(f0) + EDnhf0 − EDnhf̄Dn,Υ
+ EPhf̄Dn,Υ

+ δ

= (Υ(f0) + EPhf0) + (EDnhf0 − EPhf0) + (EPhf̄Dn,Υ
− EDnhf̄Dn,Υ

) + δ . (12)

Let us first bound the term EDnhf0 − EPhf0 . To this end, we further split this difference into

EDn
hf0 − EPhf0 =

(
EDn(hf0 − hf̄0

)− EP (hf0 − hf̄0
)
)

+
(
EDnhf̄0

− EPhf̄0

)
. (13)

Now L ◦ f0 − L ◦ f̄0 ≥ 0 implies hf0 − hf̄0
= L ◦ f0 − L ◦ f̄0 ∈ [0, B0], and hence we obtain

EP

(
(hf0 − hf̄0

)− EP (hf0 − hf̄0
)
)2 ≤ EP (hf0 − hf̄0

)2 ≤ B0 EP (hf0 − hf̄0
) .

Inequality (11) applied to h := (hf0 − hf̄0
)− EP (hf0 − hf̄0

) thus shows that

EDn(hf0 − hf̄0
)− EP (hf0 − hf̄0

) <

√
τcσB0 EP (hf0 − hf̄0

)
nα

+
cBB0τ

nα

holds with probability µ not less than 1− Ce−τ . Moreover, using
√
ab ≤ a

2 + b
2 , we find√

n−ατcσB0 EP (hf0 − hf̄0
) ≤ EP (hf0 − hf̄0

) + n−αcσB0τ/4 ,

6



and consequently we have with probability µ not less than 1− Ce−τ that

EDn
(hf0 − hf̄0

)− EP (hf0 − hf̄0
) < EP (hf0 − hf̄0

) +
7cBB0τ

4nα
. (14)

In order to bound the remaining term in (13), that is EDn
hf̄0

− EPhf̄0
, we first observe that (5)

implies ‖hf̄0
‖∞ ≤ B, and hence we have ‖hf̄0

− EPhf̄0
‖∞ ≤ 2B. Moreover, (6) yields

EP (hf̄0
− EPhf̄0

)2 ≤ EPh
2
f̄0
≤ V (EPhf̄0

)ϑ .

In addition, if ϑ ∈ (0, 1], Lemma 3.2 implies for q := 2
2−ϑ , q′ := 2

ϑ , a := (n−αcσ2−ϑϑϑV τ)1/2,
and b := (2ϑ−1EPhf̄0

)ϑ/2, that√
cσV τ(EPhf̄0

)ϑ

nα
≤

(
1− ϑ

2

)(
cσ2−ϑϑϑV τ

nα

) 1
2−ϑ

+ EPhf̄0
≤

(
cσV τ

nα

) 1
2−ϑ

+ EPhf̄0
.

Since EPhf̄0
≥ 0, this inequality also holds for ϑ = 0, and hence (11) shows that we have

EDn
hf̄0

− EPhf̄0
< EPhf̄0

+
(
cσV τ

nα

) 1
2−ϑ

+
2cBBτ
nα

(15)

with probability µ not less than 1− Ce−τ . By combining this estimate with (14) and (13), we now
obtain that with probability µ not less than 1− 2Ce−τ we have

EDnhf̄0
− EPhf̄0

< EPhf̄0
+

(
cσV τ

nα

) 1
2−ϑ

+
2cBBτ
nα

+
7cBB0τ

4nα
, (16)

i.e., we have established a bound on the second term in (12).
Let us now fix a minimal ε-net C of F , that is, an ε-net of cardinality |C| = N (F , ‖ · ‖∞, ε). Let
us first consider the case nα < 3cB(τ + ln |C|). Combining (16) with (12) and using B ≤ B0,
B2−ϑ ≤ V , 3cB ≤ cσ , 2 ≤ 41/(2−ϑ), and EPhf̄Dn,Υ

− EDnhf̄Dn,Υ
≤ 2B, we then find

Υ(fDn,Υ) +RL,P (fDn,Υ)−R∗
L,P

≤ Υ(f0) + 2EPhf0 +
(
cσV τ

nα

) 1
2−ϑ

+
2cBBτ
nα

+
7cBB0τ

4nα
+ (EPhf̄Dn,Υ

− EDn
hf̄Dn,Υ

) + δ

≤ Υ(f0) + 2EPhf0 +
(
cσV (τ + ln |C|)

nα

) 1
2−ϑ

+
4cBB0τ

nα
+ 2B

(
cσ(τ + ln |C|)

nα

) 1
2−ϑ

+ δ

≤ 3Υ(f0) + 3EPhf0 +
(

36cσV (τ + ln |C|)
nα

) 1
2−ϑ

+
4cBB0τ

nα
+ δ

with probability µ not less than 1−2e−τ . It thus remains to consider the case nα ≥ 3cB(τ +ln |C|).
To establish a non-trivial bound on the term EPhf̄D

− EDnhf̄D
in (12), we define functions

gf,r :=
EPhf̄ − hf̄

EPhf̄ + r
, f ∈ F ,

where r > 0 is a real number to be fixed later. For f ∈ F , we then have ‖gf,r‖∞ ≤ 2Br−1, and for
ϑ > 0, q := 2

2−ϑ , q′ := 2
ϑ , a := r, and b := EPhf̄ 6= 0, the first inequality of Lemma 3.2 yields

EP g
2
f,r ≤

EPh
2
f̄

(EPhf̄ + r)2
≤

(2− ϑ)2−ϑϑϑ EPh
2
f̄

4r2−ϑ(EPhf̄ )ϑ
≤ V rϑ−2 . (17)

Moreover, for ϑ ∈ (0, 1] and EPhf̄ = 0, we have EPh
2
f̄

= 0 by the variance bound (6), which in
turn implies EP g

2
f,r ≤ V rϑ−2. Finally, it is not hard to see that EP g

2
f,r ≤ V rϑ−2 also holds for

ϑ = 0. Now, (11) together with a simple union bound yields

µ

(
Dn ∈ (X × Y )n : sup

f∈C
EDngf,r <

√
cσV τ

nαr2−ϑ
+

2cBBτ
nαr

)
≥ 1− C |C| e−τ ,
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and consequently we see that, with probability µ not less than 1− C |C| e−τ , we have

EPhf̄ − EDnhf̄ <
(
EPhf̄ + r

)(√
cσV τ

nαr2−ϑ
+

2cBBτ
nαr

)
(18)

for all f ∈ C. Since fDn,Υ ∈ F , there now exists an fDn ∈ C with ‖fDn,Υ − fDn‖∞ ≤ ε. By the
assumed Lipschitz continuity of L the latter implies∣∣hf̄Dn

(x, y)− hf̄Dn,Υ
(x, y)

∣∣ ≤ ∣∣f̄Dn(x)− f̄Dn,Υ(x)
∣∣ ≤ ∣∣fDn(x)− fDn,Υ(x)

∣∣ ≤ ε

for all (x, y) ∈ X × Y . Combining this with (18), we obtain

EPhf̄Dn,Υ
− EDnhf̄Dn,Υ

<
(
EPhf̄ + ε+ r

)(√
cσV (τ + ln |C|)

nαr2−ϑ
+

2cBB(τ + ln |C|)
nαr

)
+ 2ε

with probability µ not less than 1− C e−τ . By combining this estimate with (12) and (16), we then
obtain that

Υ(fDn,Υ) + EPhf̄Dn,Υ
< Υ(f0) + 2EPhf0 +

(
cσV τ

nα

) 1
2−ϑ

+
2cBBτ
nα

+
7cBB0τ

4nα
+ 2ε+ δ

+
(
EPhf̄Dn,Υ

+ ε+ r
)(√cσV (τ + ln |C|)

nαr2−ϑ
+

2cBB(τ + ln |C|)
nαr

)
(19)

holds with probability µ not less than 1 − 3Ce−τ . Consequently, it remains to bound the various
terms. To this end, we first observe that for

r :=
(

36cσV (τ + ln |C|)
nα

)1/(2−ϑ)

,

we obtain, since 6 ≤ 361/(2−ϑ),(cσV τ
nα

) 1
2−ϑ ≤ r

6
and

√
cσV (τ + ln |C|)

nαr2−ϑ
≤ 1

6
.

In addition, V ≥ B2−ϑ, cσ ≥ 3cB , 6 ≤ 361/(2−ϑ), and nα ≥ 3cB(τ + ln |C|) imply

2cBB(τ + ln |C|)
rnα

=
6
9
· 3cB(τ + ln |C|)

nα
· B
r

≤ 6
9
·
(3cB(τ + ln |C|)

nα

) 1
2−ϑ · V

1
2−ϑ

r

≤ 1
9
·
(36cσV (τ + ln |C|)

nαr2−ϑ

) 1
2−ϑ

=
1
9
.

Using these estimates together with 1/6 + 1/9 ≤ 1/3 in (19), we see that

Υ(fDn,Υ) + EPhf̄Dn,Υ
< Υ(f0) + 2EPhf0 +

r

3
+

7cBB0τ

4nα
+

EPhf̄Dn,Υ
+ ε+ r

3
+ 2ε+ δ

holds with probability µ not less than 1− 3Ce−τ . Consequently, we have

Υ(fDn,Υ)+EPhf̄Dn,Υ
< 3Υ(f0)+3EPhf0 +

(
36cσV (τ + ln |C|

nα

)1/(2−ϑ)

+
4cBB0τ

nα
+4ε+2δ ,

i.e. we have shown the assertion.

Proof of Corollary 2.3: The result follows from minimizing the right-hand side of the oracle in-
equality of Theorem 2.1 with respect to ε.
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