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Abstract

We prove an oracle inequality for generic regularized empirical risk minimization
algorithms learning from a-mixing processes. To illustrate this oracle inequality,
we use it to derive learning rates for some learning methods including least squares
SVMs. Since the proof of the oracle inequality uses recent localization ideas
developed for independent and identically distributed (i.i.d.) processes, it turns
out that these learning rates are close to the optimal rates known in the i.i.d. case.

1 Introduction

In the past, most articles investigating statistical properties of learning algorithms assumed that the
observed data was generated in an i.i.d. fashion. However, in many applications this assumption
cannot be strictly justified since the sample points are intrinsically temporal and thus often weakly
dependent. Typical examples for this phenomenon are applications where observations come from
(suitably pre-processed) time series, i.e., for example, financial predictions, signal processing, sys-
tem observation and diagnosis, and speech or text recognition. A set of natural and widely accepted
notions for describing such weak dependenciesﬂ are mixing concepts such as a-, 8-, and ¢-mixing,
since a) they offer a generalization to i.i.d. processes that is satisfied by various types of stochastic
processes including Markov chains and many time series models, and b) they quantify the depen-
dence in a conceptionally simple way that is accessible to various types of analysis.

Because of these features, the machine learning community is currently in the process of appreciat-
ing and accepting these notions as the increasing number of articles in this direction shows. Prob-
ably the first work in this direction goes back to Yu [20]], whose techniques for §-mixing processes
inspired subsequent work such as [[18, [10, [11]], while the analysis of specific learning algorithms
probably started with [9] 5 [8]. More recently, [[7] established consistency of regularized boosting
algorithms learning from -mixing processes, while [[15]] established consistency of support vector
machines (SVMs) learning from a-mixing processes, which constitute the largest class of mixing
processes. For the latter, [21] established generalization bounds for empirical risk minimization
(ERM) and [19}117] analyzed least squares support vector machines (LS-SVMs).

In this work, we establish a general oracle inequality for generic regularized learning algorithms and
a-mixing observations by combining a Bernstein inequality for such processes [9] with localization
ideas for i.i.d. processes pioneered by [6] and refined by e.g. [1]. To illustrate this oracle inequality,
we then use it to show learning rates for some algorithms including ERM over finite sets and LS-
SVMs. In the ERM case our results match those in the i.i.d. case if one replaces the number of
observations with the “effective number of observations”, while, for LS-SVMs, our rates are at
least quite close to the recently obtained optimal rates [[16] for i.i.d. observations. However, the
latter difference is not surprising, when considering the fact that [16] used heavy machinery from

"For example, [4] write on page 71: “... it is a common practice to assume a certain mild asymptotic
independence (such as a-mixing) as a precondition in the context of ... nonlinear times series.”



empirical process theory such as Talagrand’s inequality and localized Rademacher averages, while
our results only use a light-weight argument based on Bernstein’s inequality.

2 Definitions, Results, and Examples

Let X be a measurable space and Y C R be closed. Furthermore, let (€2, A, 1) be a probability
space and Z := (Z;);>1 be a stochastic process such that Z; : Q@ — X x Y foralli > 1. Forn > 1,
we further write D,, := ((X1,Y1),...,(Xn,Yn)) := (Z1,...,Z,) for a training set of length n
that is distributed according to the first n components of Z. Throughout this work, we assume that

Z is stationary, i.e., the (X x Y)"-valued random variables (Z;,,..., Z; ) and (Z;, 14, ..., Zi, +i)
have the same distribution for all n, 7,21, ...,7, > 1. We further write P for the distribution of one
(and thus all) Z;, i.e., for all measurable A C X x Y, we have

P(A) = p({w € Q: Z;(w) € A}). ()

To learn from stationary processes whose components are not independent, [15] suggests that it is
necessary to replace the independence assumption by a notion that still guarantees certain concen-
tration inequalities. We will focus on a-mixing, which is based on the a-mixing coefficients

a(Z,pu,n) = sup{|u(A NB) — u(A)u(B)|:i>1, Ac Al and B € Aff_n} , n>1,

where Aj and A7, are the o-algebras generated by (Z1, ..., Z;) and (Zijn, Zignt1, - - - ), T€spec-
tively. Throughout this work, we assume that the process Z is geometrically a-mixing, that is
OL(Z,M,R) < cexp(—bn”’), n = 17 (2)

for some constants b > 0, ¢ > 0, and v > 0. Of course, i.i.d. processes satisfy (2) for ¢ = 0 and all
b,y > 0. Moreover, several time series models such as ARMA and GARCH, which are often used
to describe, e.g. financial data, satisfy under natural conditions [4, Chapter 2.6.1], and the same
is true for many Markov chains including some dynamical systems perturbed by dynamic noise, see
e.g. [18| Chapter 3.5]. An extensive and thorough account on mixing concepts including stronger
mixing notions such as 3- and ¢-mixing is provided by [3]].

Let us now describe the learning algorithms we are interested in. To this end, we assume that we
have a hypothesis set F consisting of bounded measurable functions f : X — IR that is pre-compact
with respect to the supremum norm || - ||, i.€., for all € > 0, the covering numbers

N(F, | - locs€) = inf{n >1:3f1,...,fn € Fsuchthat F C U B(fi,e)}
i=1
are finite, where B(f;,€) := {f € loo(X) : ||f — filloo < €} denotes the e-ball with center f; in the
space £ (X) of bounded functions f : X — R. Moreover, we assume that we have a regularizer,
that is, a function T : F — [0, 00). Following [13| Definition 2.22], we further say that a function
L:X xY xR — [0,00) is a loss that can be clipped at some M > 0, if L is measurable and

L(z,y,t) < L(z,y,t), (z,y,t) e X xY xR, 3)

where ¢ denotes the clipped value of ¢ at +M, thatis ¢ := tift € [-M,M], t := —M if t < —M,
and ¢ := M if t > M. Various often used loss functions can be clipped. For example, if ¥ :=
{=1,1} and L is a convex, margin-based loss represented by ¢ : R — [0, 00), that is L(y,t) =
o(yt) forally € Y andt € R, then L can be clipped, if and only if ¢ has a global minimum, see [[13]
Lemma 2.23]. In particular, the hinge loss, the least squares loss for classification, and the squared
hinge loss can be clipped, but the logistic loss for classification and the AdaBoost loss cannot be
clipped. On the other hand, [12] established a simple technique, which is similar to inserting a
small amount of noise into the labeling process, to construct a clippable modification of an arbitrary
convex, margin-based loss. Moreover, if Y := [—M, M] and L is a convex, distance-based loss
represented by some ¢ : R — [0,00), thatis L(y,t) = ¢(y —t) forally € Y and t € R, then L
can be clipped whenever ¢(0) = 0, see again [13] Lemma 2.23]. In particular, the least squares loss
and the pinball loss used for quantile regression can be clipped, if the space of labels Y is bounded.

Given a loss function L and an f : X — IR, we often use the notation L o f for the function
(z,y) — L(z,y, f(x)). Moreover, the L-risk is defined by

Rip(f) = / L(z,y, f(x)) dP(z.y),

XxXY



and the minimal L-risk is R} p = inf{Rr p(f)|f : X — R}. In addition, a function f} p
satisfying R, p(f7 p) = R} p is called a Bayes decision function. Finally, we denote empirical
risks based on D,, by Ry, p, (f), that is, for a realization of D,,(w) of the training set D,, we have

Repa( () = 30 D(Xilw), ¥ilw), FXi(w))

Given a regularizer Y : F — [0, 00), a clippable loss, and an accuracy 6 > 0, we consider learning
methods that, for all n > 1, produce a decision function fp, vy € F satisfying

Y(fp,r)+Re.p, (o, 1)< ]}g;(T(f) + RL,Dn(f)) +94. “4)

Note that methods such as SVMs (see below) that minimize the right-hand side of (@) exactly, satisfy
@]), because of (EI) The following theorem, which is our main result, establishes an oracle inequality
for methods (@), when the training data is generated by Z.

Theorem 2.1 Let L : X x Y x R — [0,00) be a loss that can be clipped at M > 0 and that
satisfies L(x,y,0) <1, L(z,y,t) < B, and

|L(z,y,t) = L(z,y,t)| < |t = 1'| (5)
forall (z,y) € X xY and t,t' € [-M, M|, where B > 0 is some constant. Moreover, let
Z = (Z;)i>1 be an X x Y -valued process that satisfies @), and P be defined by . Assume that
there exist a Bayes decision function [} p and constants ¥ € [0,1] and V' > B2>~Y such that

= . 2 = . Y
Ep(Lof—LofL,P) SV-(EP(Lof—LofL,p)) , fer, (6)

where F is a hypothesis set and L o [ denotes the function (x,y) — L(x,y, f(x)). Finally, let
T : F — [0,00) be a regularizer, fo € F be a fixed function and By > B be a constant such that
IL o folleo < Bo. Then, for all fixed e > 0, § >0, 7 > 0, and n > max{b/8, 22T5/7p=1/7}, every
learning method defined by (E]) satisfies with probability 1 not less than 1 — 3Ce™ 7

- N 4BycpT
Y(fp,.1) + Rep(fp. 1) ~Rip < 3(Y(fo) + Rep(fo) ~Rip) +— "

n(l

+(3GCUV(T +InN(F,| - m,g))>1/(”>

+4e + 20

ne ’

where o 1= C:=1+4e%c c, = (@)1/(1"‘7), and cp := ¢, /3.

e
y+1’
Before we illustrate this theorem by a few examples, let us briefly discuss the variance bound (6).
For example, if Y = [—M, M] and L is the least squares loss, then it is well-known that (6) is
satisfied for V := 16 M2 and ¢ = 1, see e.g. [13} Example 7.3]. Moreover, under some assumptions
on the distribution P, [14] established a variance bound of the form @ for the so-called pinball
loss used for quantile regression. In addition, for the hinge loss, @ is satisfied for ¥ := ¢/(q + 1),
if Tsybakov’s noise assumption holds for g, see 13| Theorem 8.24]. Finally, based on [2], [12]
established a variance bound with ¥} = 1 for the earlier mentioned clippable modifications of strictly
convex, twice continuously differentiable margin-based loss functions.

One might wonder, why the constant By is necessary in Theorem [2.1] since appearently it only adds
further complexity. However, a closer look reveals that the constant B only bounds functions of the
form L o f, while By bounds the function L o fq for an unclipped f, € F. Since we do not assume
that all f € F satisfy f = f, we conclude that in general By is necessary. We refer to Examples
and [2.5]for situations, where By is significantly larger than B.

Let us now consider a few examples of learning methods to which Theorem [2.1] applies. The first
one is empirical risk minimization over a finite set.

Example 2.2 Let the hypothesis set F be finite and Y'(f) = 0 for all f € F. Moreover, assume
that || f||cc < M for all f € F. Then, for accuracy ¢ := 0, the learning method described by (4) is

ERM, and Theorem 2.1 provides, by some simple estimates, the oracle inequality
36¢, V(T + In|F|) ) 1/2=9) N 4BcpT

ne ne

Ri.p(fo. ) = Rip <3 ol (Rup(f) = Rip) +



Besides constants, this oracle inequality is an exact analogue to the standard oracle inequality for
ERM learning from i.i.d. processes, [13, Theorem 7.2]. <

Before we present another example, let us first reformulate Theorem[2.T|for the case that the involved
covering numbers have a certain polynomial behavior.

Corollary 2.3 Consider the situation of Theorem and additionally assume that there exist con-
stants a > 0 and p € (0, 1] such that

IN(F, |- [l ) S ae™, e > 0.
Then there is c, 9 > 0 only depending on p and ¥ such that the inequality of Theorem reduces to

coVa

nOé

_ 1/(242p—1)
Y(fp,x)+Rep(fp,x) —Rip < 3(Y(fo) +Re,p(fo) —Rip)+ Cp,ﬂ< )

+26.

36c,V7\ "/ 4Bepr

+ +—
ne ne

For the learning rates considered in the following examples, the exact value of ¢, » is of no impor-

tance. However, a careful numerical analysis shows that ¢, y < 40 for all p € (0,1] and ¥ € [0, 1].

Corollary [2.3] can be applied to various methods including e.g. SVMs with the hinge loss or the
pinball loss, and regularized boosting algorithms. For the latter, we refer to e.g. 2] for some learning
rates in the i.i.d. case and to [7]] for a consistency result in the case of geometrically (-mixing
observations. Unfortunately, a detailed exposition of the learning rates resulting from Corollary 2.3]
for all these algorithms is clearly out of scope this paper, and hence we will only discuss learning
rates for LS-SVMs. However, the only reason we picked LS-SVMs is that they are one of the few
methods for which both rates for learning from c-mixing processes and optimal rates in the i.i.d. case
are known. By considering LS-SVMs we can thus assess the sharpness of our results. Let us begin
by briefly recalling LS-SVMs. To this end, let X be a compact metric space and k be a continuous
kernel on X with reproducing kernel Hilbert space (RKHS) H. Given a regularization parameter
A > 0 and the least squares loss L(y,t) := (y — t)2, the LS-SVM finds the unique solution

fp, A = arg ?éig@l\fll?f +RLp,(f))-

To describe the approximation properties of H, we further need the approximation error function

A= i OIS+ Rep(f) - Rip),  A>0.
Example 2.4 (Rates for least squares SVMs) Let X be a compact metric space, Y = [—1, 1], and

Z and P as above. Furthermore, let L be the least squares loss and H be the RKHS of a continuous
kernel k£ over X. Assume that the closed unit ball By of H satisfies

N (By, | - |l e) < ac™?, e>0, (7)

where ¢ > 0 and p € (0, 1] are some constants. In addition, assume that the approximation error
function satisfies A(\) < ¢\’ for some ¢ > 0, 3 € (0,1], and all A > 0. We define

p = min{ﬁ, L} .
B+2p68+p
Then Corollary [2.3applied to F := A\~1/2By; shows that the LS-SVM using \,, := n~*?/7 learns
with rate n~*”. Let us compare this rate with other recent results: [[17] establishes the learning rate

_ 28
n- s,
whenever ([2) is satisfied for some «. At first glance, this rate looks stronger, since it is independent
of a. However, a closer look shows that it depends on the confidence level 1 —3C'e™" by a factor of
e” rather than by the factor of 7 appearing in our analysis, and hence these rates are not comparable.
Moreover, in the case ov = 1, our rates are still faster whenever p € (0, 1/3], which is e.g. satisfied



for sufficiently smooth kernels, see e.g. [13L Theorem 6.26]. Moreover, [19]] has recently established

the rate
ap

o ®)
which is faster than ours, if and only if 5 > 11_:'2’; . In particular, for highly smooth kernels such

as the Gaussian RBF kernels, where p can be chosen arbitrarily close to 0, their rate is never faster.
Moreover, [[19] requires knowing «, which, as we will briefly discuss in Remark@ is not the case
for our rates. In this regard, it is interesting to note that their iterative proof procedure, see [[13|
Chapter 7.1] for a generic description of this technique, can also be applied to our oracle inequality.
The resulting rate is essentially n~®™n{8.8/(3+p5+P)} which is always faster than (8). Due to
space constraints and the fact that these rates require knowing « and /3, we skip a detailed exposition.
Finally, both [19] and [17] only consider LS-SVMs, while Theorem [2.T] applies to various learning
methods. <

Example 2.5 (Almost optimal rates for least squares SVMs) Consider the situation of Example
[ZEI, and additionally assume that there exists a constant C}, > 0 such that

1Flloo < Co lF NI oy feH. 9)

As in [16], we can then bound By < A#=YP_and hence the SVM using A\, :=n" 772375 learns
with rate 5
n= BTt

. __B_ . .. . .
compared to the optimal rate n~ #+7 in the i.i.d. case, see [16]. In particular, if H = W™(X)
is a Sobolev space over X C R? with smoothness m > d/2, and the marginal distribution Px
is absolutely continuous with respect to the uniform distribution, where corresponding density is

bounded away from 0 and co, then and are satisfied for p := %. Moreover, the assumption
on the approximation error function is satisfied for 3 := s/m, whenever f; p € W*(X) and

s € (d/2,m]. Consequently, the resulting learning rate is
_ 2sa
n~ 2stdt2ds/m

which in the i.i.d. case, where o = 1, is worse than the optimal rate n.~ Tt by the term 2ds/m. Note
that this difference can be made arbitrarily small by picking a sufficiently large m. Unfortunately,
we do not know, whether the extra term 2ds/m is an artifact of our proof techniques, which are
relatively light-weighted compared to the heavy machinery used in the i.i.d. case. Similarly, we
do not know, whether the used Bernstein inequality for a-mixing processes, see Theorem [3.1] is
optimal, but it is the best inequality we could find in the literature. However, if there is, or will be, a
better version of this inequality, our oracle inequalities can be easily improved, since our techniques
only require a generic form of Bernstein’s inequality. <

Remark 2.6 In the examples above, the rates were achieved by picking particular regularization
sequences that depend on both « and (3, which in turn, are almost never known in practice. Fortu-
nately, there exists an easy way to achieve the above rates without such knowledge. Indeed, let us
assume we pick a polynomially growing n~'/P-net A,, of (0, 1], split the training sample D,, into

two (almost) equally sized and consecutive parts D(l) and D7(12), compute f DM forall A\ € A,

and pick a \* € A,, whose f D) Ax minimizes the R L.D®" -risk over A,,. Then combining Example

[2.2 with the oracle inequality of Corollary [2.3] for LS-SVMs shows that the learning rates of the
Examples [2.4] and [2.5] are also achieved by this training-validation approach. Although the proof is
a stralghtforward modification of [[13| Theorem 7.24], it is out of the page limit of this paper. <

3 Proofs

In the following, |t| denotes the largest integer n satisfying n < ¢, and similarly, [¢] denotes the
smallest integer n satisfying n > t.

The key result we need to prove the oracle inequality of Theorem [2.T]is the following Bernstein type
inequality for geometrically a-mixing processes, which was established in [9, Theorem 4.3]:



Theorem 3.1 Let Z := (Z;);>1 be an X X Y -valued stochastic process that satisfies and P be
defined by (I). Furthermore, let h : X XY — R be a bounded measurable function for which there
exist constants B > 0 and o > 0 such that Eph = 0, Eph? < 02, and ||h||sc < B. Forn > 1 we

define
171
o= )T

Then, for alln > 1 and all € > 0, we have

3¢2n(7)

l - ) -2 T 60242:B
p({weﬂ. n;h(Zl(w)) ZE}) < (1+4e?c)e sot2en (10)

Before we prove Theorem [2.1] we need to slightly modify (I0). To this end, we first observe that
[t] < 2tforallt > 1and |t] > t/2 forall ¢t > 2. From this it is easy to conclude that, for all n

satisfying n > ng := max{b/8, 22T5/7p=1/7}, we have
n( > 27%bﬁ n®,

where a := 5. For € := 1+ de~%c, ¢, = ()14, and ¢ = ¢, /3, we thus obtain

u({weQ:iih(Zi(w)) 25}> < Ce, n > no,

where 7 := ”‘ii";BB. Simple transformations and estimations then yield
1 — TCc,02 cpBT
e — h(Z; > < Ce™ 7 11
w({oena o nmen = T+ B ) < oo an

for all n > max{b/8,22t5/7p=1/7} and 7 > 0. In the following, we will use only this inequality.
In addition, we will need the following simple and well-known lemma:

Lemma 3.2 For g € (1,00), define ¢ € (1,00) by 1/q+ 1/q' = 1. Then, for all a,b > 0, we have
(qa)?/9(¢'b)2/7 < (a+b)2 and ab < a9/q+ b /{.

Proof of Theorem 2.1} For f : X — R we define hy := Lo f — Lo f} p. By the definition of
fp, v, wethenhave Y(fp, v)+Ep, hs, . < Y(fo) +Ep,hy, + 9, and consequently we obtain

Y(fp,x)+Rep(fp,x) —Rip
= Y(fp,r)+Ephs, .
< Y(fo) +Ep,hs, —Ep,hj, . +Ephs,  +6
= (Y(fo) +Ephy) + (Ep,hys, —Ephs,) + (Bphj, . —Ep,hp, )+46. (12)
Let us first bound the term Ep_hy, — Ephy,. To this end, we further split this difference into
Ep,hs, —Ephg, = (Ep, (hs, — hj,) —Ep(hg, — b)) + (Ep,hf, — Ephy,) . (13)
Now Lo fo — Lo fo > 0 implies hgy—hg =Lo fo—Lo fo € [0, By, and hence we obtain

2
Ep((hsy = hf,) —Ep(hgy —hyf))” < Ep(hy, — hf,)? < BoEp(hy, — hy,) -
Inequality applied to h := (hg, — hj,) —Ep(hg, — hj,) thus shows that

TC(TBO Ep(hfo - hfo) 4 CBBoT

ne n<

Ep,(hs, —hg) —Ep(hs, —hy) < \/

holds with probability  not less than 1 — C'e™". Moreover, using vVab < § + %, we find

\/n—“Tcho Ep(hf, —hf) <Ep(hs, — hjf) +n"%coBoT/4,



and consequently we have with probability p not less than 1 — C'e™7 that

TcgBot
EDn(hfo_hfo)_EP(hfo_hfg) <]Ep(hf0—hf0)+ fnao . (14)

In order to bound the remaining term in lb that is Ep_h Fo — Eph For W€ first observe that
implies ||z, ||« < B, and hence we have [[hf, — Ephy, | < 2B. Moreover, @ yields

Ep(hj, —Ephy,)? <Eph% < V(Ephj,)".

In addition, if 9 € (0,1], Lemmaimplies forq:= 525.¢ == 2,a:= (n=%c, 27997V r)1/2,
and b := (20~ 'Ephy,)"/?, that

O'V Erhz)? 9 027191919 ﬁ > ﬁ
”M < <1> (CVT> +Ephj, < (c VT) +Ephj,.
ne 2 ne 0 ne 0

Since Eph Fo 2 0, this inequality also holds for ¥ = 0, and hence @ shows that we have

o o 15)

1
JVT\TT 2B
Ep,hj, —Ephj, < Ephj, + (”) Tl ekl

with probability 1 not less than 1 — C'e™7. By combining this estimate with and (13)), we now
obtain that with probability p not less than 1 — 2C'e™" we have

; (16)

1
ceVT\2? 2¢cgBt TcgByt

EDnhfo _Ephfo < Ephfo + ( no ) + no + Ane

i.e., we have established a bound on the second term in (12).

Let us now fix a minimal e-net C of F, that is, an e-net of cardinality |C| = N (F, || - ||, €). Let

us first consider the case n® < 3cp(7 + In|C|). Combining (16) with and using B < By,
B> <V,3cp < ¢5,2<4Y Y andEphj, . —Ep, h7, . < 2B, we then find
Y(fp,x)+Rrp(fp,x) —RLp

1
coVT\2? 2cgBt TepBot
o‘a ) i Ba 4 fesbot
n n 4ne

< Y(fo)+2Ephy, + ( (Ephg, . —Ep,hf, )+0

V(T +1In |C|))2119 N 4cp Byt N 2B(cg(T —;O}DC|)>21“9 L

ne ne

< Y(fo)+2Ephy, + (

1

36¢, V(T + 1n|C|) ) -9 n depBot

na

+0

< 3Y(fo) +3Ephy, + ( o

with probability p not less than 1 —2e~7". It thus remains to consider the case n®* > 3cg(7+1n|C|).

To establish a non-trivial bound on the term Ephy, — Ep, hj, in (12), we define functions
Ephy—hy

= =" fer,

gf,r Ephf—F’l"

where r > 0 is a real number to be fixed later. For f € F, we then have ||g.,||cc < 2Br~!, and for
¥>0,q:=5%5.¢ =2, a:=r,and b := Ephj # 0, the first inequality of Lemmayields
Eph? (2 9)> 79" Eph?

< <Vri2, 17
Eph;+7)2 = 42 9(Ephp)? — {an

Epgi, < (

Moreover, for ¢ € (0,1] and Eph F= 0, we have E Ph?; = 0 by the variance bound @, which in

turn implies E ng%,r < VrY~2. Finally, it is not hard to see that E ng%nn < V92 also holds for
¥ = 0. Now, together with a simple union bound yields

Vr 2B B
M(Dne(XxY)”;supEDngf,rq/ A & T) >1-cClcle,
fec n-=r ner




and consequently we see that, with probability x not less than 1 — C'|C| ™7, we have

c VT 2cg BT
Ephf—EDnhf<(Ephf+r)<\/n%2_ﬂ+ o > (18)

forall f € C. Since fp, v € F, there now exists an fp, € C with || fp, v — fp, |lcc < &. By the
assumed Lipschitz continuity of L the latter implies

\h, (,9) = hiy o (@9)| < |fp,(2) = fp,v(@)] < |fp,(2) = fp, x(2)] <e
for all (z,y) € X x Y. Combining this with (I8), we obtain

V(T +In|C 2cgB(t +1In|C
]Epthn,T_]EDnthn,T<(Ephf+€+r)< V(T +1n| |)+ cB(T +1n| )>+25

nar2719 ney

with probability i not less than 1 — C'e™". By combining this estimate with and , we then
obtain that

+2e+6

ch7> =3 | 2e5B7 | TepBor
ne ne 4no
co V(T +1n|C 2cgB(t +1In|C
CIRED , 2Bt D)
nor nor

T(fp.x)+Ephg, < T(fo)+2Ephy, + (

#(@rhp,, . 2 7)

holds with probability x4 not less than 1 — 3C'e™". Consequently, it remains to bound the various
terms. To this end, we first observe that for

. (36CUV(T+ln|C|)>1/(2_19)

na

we obtain, since 6 < 361/(2=?)

VTN _ T cV(ir+n|C]) 1
< - d _— < -,
( ne ) ~6 . nor2=vy 6
In addition, V > B277Y, ¢, > 3cp, 6 < 36/(27) and n® > 3cp(7 4+ In|C|) imply

2cpB(r+Wn|C)) 6 Bcp(r+mlfc) B _ 6 (3CB(T+1n|C|))ﬁ Ve
rn% ) ne r — 9 ne T
1 /36c,V(T+1In|C|)\ =7 1
<5 -
9 nar2—19

Using these estimates together with 1/6 4+ 1/9 < 1/3 in (19), we see that

r  TegBor Ephg Ledr
T(fp.00) + Ephyy, o < T(fo) + 2Bphy, + 5 + —p 2 + ——222

holds with probability x not less than 1 — 3Ce™". Consequently, we have

+2e+4

36c,V (T +1n[C| > 1/@=9) | depBor

T(fDT,,,T) +EpthmT < 3T(f0) +3Ephf0 + ( e +4e+424,

n()t
i.e. we have shown the assertion. |

Proof of Corollary 2.3} The result follows from minimizing the right-hand side of the oracle in-
equality of Theorem [2.1| with respect to ¢. [ |
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